Anti-Fogging, Frost-Resistant transparent and flexible silver Nanowire-Ti3C2Tx MXene based composite films for excellent electromagnetic interference shielding ability.

2021 
Abstract The development of electronics proposes higher requirements for flexible, transparent, and conductive materials with high electromagnetic shielding performance in viewing windows. Flexible transparent films have been fabricated by collaborating one-dimensional silver nanowires (AgNWs) and novel two-dimensional Ti3C2Tx MXene sheets on PET films with an external polymeric coating consisting of poly (vinyl alcohol) (PVA) and poly(styrene sulfonate) (PSS). Especially, the combination of different dimensional nanomaterials effectively establishes a conductive network that exhibits a synergistic effect on excellent electromagnetic interference (EMI) shielding performance, which is superior to that of pure AgNW network or Ti3C2Tx network to some extent. By optimizing the AgNWs content (0.05 mg/cm2) and Ti3C2Tx sheets content (0.01 mg/cm2), the PET/AgNW/Ti3C2Tx/PVA-PSS film exhibits a transmittance of 81% and a desirable EMI SE value of 30.5 dB. In addition, the film shows outstanding anti-fogging and frost-resistant properties due to the remarkable water absorption capacity of PVA and PSS on the external surface. Considering its efficiency and simplicity, this transparent conductive film has promising applications in flexible transparent electronic devices and optical related fields.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    46
    References
    0
    Citations
    NaN
    KQI
    []