A Novel Deep Learning-Based Collaborative Filtering Model for Recommendation System

2019 
The collaborative filtering (CF) based models are capable of grasping the interaction or correlation of users and items under consideration. However, existing CF-based methods can only grasp single type of relation, such as restricted Boltzmann machine which distinctly seize the correlation of user–user or item–item relation. On the other hand, matrix factorization explicitly captures the interaction between them. To overcome these setbacks in CF-based methods, we propose a novel deep learning method which imitates an effective intelligent recommendation by understanding the users and items beforehand. In the initial stage, corresponding low-dimensional vectors of users and items are learned separately, which embeds the semantic information reflecting the user–user and item–item correlation. During the prediction stage, a feed-forward neural networks is employed to simulate the interaction between user and item, where the corresponding pretrained representational vectors are taken as inputs of the neural networks. Several experiments based on two benchmark datasets (MovieLens 1M and MovieLens 10M) are carried out to verify the effectiveness of the proposed method, and the result shows that our model outperforms previous methods that used feed-forward neural networks by a significant margin and performs very comparably with state-of-the-art methods on both datasets.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    46
    References
    68
    Citations
    NaN
    KQI
    []