Scanning electron microscope measurement of width and shape of 10 nm patterned lines using a JMONSEL-modeled library

2015 
Abstract The width and shape of 10 nm to 12 nm wide lithographically patterned SiO 2 lines were measured in the scanning electron microscope by fitting the measured intensity vs. position to a physics-based model in which the lines' widths and shapes are parameters. The approximately 32 nm pitch sample was patterned at Intel using a state-of-the-art pitch quartering process. Their narrow widths and asymmetrical shapes are representative of near-future generation transistor gates. These pose a challenge: the narrowness because electrons landing near one edge may scatter out of the other, so that the intensity profile at each edge becomes width-dependent, and the asymmetry because the shape requires more parameters to describe and measure. Modeling was performed by JMONSEL (Java Monte Carlo Simulation of Secondary Electrons), which produces a predicted yield vs. position for a given sample shape and composition. The simulator produces a library of predicted profiles for varying sample geometry. Shape parameter values are adjusted until interpolation of the library with those values best matches the measured image. Profiles thereby determined agreed with those determined by transmission electron microscopy and critical dimension small-angle x-ray scattering to better than 1 nm.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    65
    References
    71
    Citations
    NaN
    KQI
    []