Hybrid asynchronous brain-computer interface for yes/no communication in patients with disorders of consciousness.

2021 
Objective.For patients with disorders of consciousness (DOC), such as vegetative state (VS) and minimally conscious state (MCS), communication is challenging. Currently, the communication methods of DOC patients are limited to behavioral responses. However, DOC patients cannot provide sufficient behavioral responses due to motor impairments and limited attention. In this study, we proposed a hybrid asynchronous brain-computer interface (BCI) system that provides a new communication channel for DOC patients.Approach.Seven DOC patients (3 VS and 4 MCS) and eleven healthy subjects participated in our experiment. Each subject was instructed to focus on the square with the Chinese words 'Yes' and 'No'. Then, the BCI system determined the target square with both P300 and steady-state visual evoked potential (SSVEP) detections. For the healthy group, we tested the performance of the hybrid system and the single-modality BCI system.Main results.All healthy subjects achieved significant accuracy (range from 72% to 100%) in both the hybrid system and the single-modality system. The hybrid asynchronous BCI system outperformed the P300-only and SSVEP-only systems. Furthermore, we employed the asynchronous approach to dynamically collect the EEG signals. Compared with the synchronous system, there was a 21% reduction in the average required rounds and a reduction of 105 s in the online experiment time. This asynchronous system was applied to detect the 'yes/no' communication function of seven DOC patients, and the results showed that three of the patients (3 MCS) showed significant accuracies (67 ± 3%) in the online experiment, and their Coma Recovery Scale-Revised (CRS-R) scores were also improved compared with the scores before the experiment. This result demonstrated that 3 of 7 patients were able to communicate using our hybrid asynchronous BCI system.Significance.This hybrid asynchronous BCI system represents a useful auxiliary bedside tool for simple communication with DOC patients.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    38
    References
    1
    Citations
    NaN
    KQI
    []