Multiple-Fault-Tolerant Dual Active Bridge Converter for DC Distribution System

2021 
The dc power transmission system has been obviously attracting more research interests in recent years. In order to satisfy the high-reliability requirement of the dc power transmission system, the power converter should be able to keep uninterrupted operation after multiple unexpected faults. However, high fault-tolerant capability usually leads to the bulky redundant circuit, which increases the cost, volume, and complexity of the power converter. Thus, a fault-tolerant dual active bridge (DAB) converter is proposed to maintain the power transferring ability under multiple unexpected open-circuit faults (OCFs) conditions, which can significantly enhance the reliability of the dc power transmission system. By reconfiguring the central-tapped transformer and two symmetrical auxiliary inductors, the half-bridge conduction branch is built to maintain uninterrupted operation when a single or dual OCF has occurred. The proposed fault-tolerant strategy only requires four extra voltage sensors to detect and locate OCFs for the reconfiguration process. Thus, it significantly improves the system reliability with a low additional cost. Besides, the inductor current, transmission power, and the small-signal models of the proposed fault-tolerant converter have been presented. It proves the proposed fault-tolerant topology can smoothly switch between normal and postfault operation due to the constituency of the inductor current. Finally, the 250-W prototype is designed to verify the advantage of the proposed fault-tolerant DAB converter.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    30
    References
    0
    Citations
    NaN
    KQI
    []