Characterization of the pressure-induced second-order phase transition in the mixed-valence vanadate BaV6O11.

2009 
The pressure dependence of the structure of the mixed-valence vanadate BaV6O11 was studied with single-crystal X-ray diffraction in a diamond–anvil cell. The compressibility data could be fitted with a Murnaghan equation of state with the zero-pressure bulk modulus B0 = 161 (7) GPa and the unit-cell volume at ambient pressure = 387.1 (3) A^3 (B′ = 4.00). A phase transition involving a symmetry reduction from P63/mmc to P63mc can be reliably detected in the high-pressure data. The estimated transition pressure lies in the range 1.18 < Pc < 3.09 GPa. The transition leads to a breaking of the regular Kagome net formed by part of the V ions. While in the ambient pressure structure all V—V distances in the Kagome net are equal, they split into inter-trimer and intra-trimer distances in the high-pressure phase. In general, these changes are comparable to those observed in the corresponding low-temperature transition. However, the pressure-induced transition takes place at a lower unit-cell volume compared with the temperature-induced transition. Furthermore, overall trends for inter-trimer and intra-trimer V—V distances as a function of the unit-cell volume are clearly different for datapoints obtained by variation of pressure and temperature. The behavior of BaV6O11 is compared with that of NaV6O11. While in the latter compound the transition can be explained as a pure volume effect, in BaV6O11 an additional degree of freedom related to the valence distribution among the symmetrically independent vanadium sites has to be taken into account.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    17
    References
    16
    Citations
    NaN
    KQI
    []