Thermally conductive polylactic acid composites with superior electromagnetic shielding performances via 3D printing technology

2021 
This work proposes a facile fabrication strategy for thermally conductive graphite nanosheets/polylactic acid sheets with ordered GNPs (o-GNPs/PLA) via fused deposition modeling (FDM) 3D printing technology. Further combination of o-GNPs/PLA with Ti3C2Tx films prepared by vacuum-assisted filtration were carried out by “layer by layer stacking-hot pressing” to be the thermally conductive Ti3C2Tx/(o-GNPs/PLA) composites with superior electromagnetic interference shielding effectiveness (EMI SE). When the content of GNPs was 18.60 wt% and 4 layers of Ti3C2Tx (6.98 wt%) films were embedded, the in-plane thermal conductivity coefficient (λ//) and EMI SE (EMI SE//) values of the thermally conductive Ti3C2Tx/(o-GNPs/PLA) composites significantly increased to be 3.44 W/(m·K) and 65 dB (3.00 mm), increased by 1223.1% and 2066.7%, respectively, compared with λ// (0.26 W/(m·K)) and EMI SE// (3 dB) of pure PLA matrix. This work offers a novel and easily route for designing and manufacturing highly thermally conductive polymer composites with superior EMI SE for broader application.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []