Study of CMOS strip sensor for future silicon tracker

2020 
Abstract Monolithic silicon sensors developed with High-Voltage CMOS (HV-CMOS) processes have become highly attractive for charged particle tracking. Compared with the standard CMOS sensors, HV-CMOS sensors can provide larger and deeper depletion regions that lead to larger signals and faster charge collection. They can provide high position resolution, low material budget, high radiation hardness and low cost that are desirable for high performance tracking in harsh collision environment. Various studies have been conducted to explore the technology feasibility for the large-area tracking systems at future collider experiments. CHESS (CMOS HV/HR Evaluation for Strip Sensor) sensor series have been developed as an alternative solution to the conventional silicon micro-strip detectors for the ATLAS inner tracker upgrade. The first prototype (named CHESS1) was to evaluate the diode geometry and the in-pixel analog electronics. Obtained test results were used to optimize the second prototype (named CHESS2). CHESS2 was implemented with a full digital readout architecture and realized as a full reticle sized monolithic sensor. In this paper, the basic characteristics of the CHESS2 prototype sensors and their performance in response to different input signals are presented.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    14
    References
    2
    Citations
    NaN
    KQI
    []