Enhanced photoluminescence quantum yield of MAPbBr 3 nanocrystals by passivation using graphene

2020 
Diminishing surface defect states in perovskite nanocrystals is a highly challenging subject for enhancing optoelectronic device performance. We synthesized organic/inorganic lead-halide perovskite MAPbBr3 (MA = methylammonium) clusters comprising nanocrystals with diameters ranging between 20–30 nm and characterized an enhanced photoluminescence (PL) quantum yield (as much as ~ 7 times) by encapsulating the MAPbBr3 with graphene (Gr). The optical properties of MAPbBr3 and Gr/MAPbBr3 were investigated by temperature-dependent micro-PL and time-resolved PL measurements. Density functional theory calculations show that the surface defect states in MAPbBr3 are removed and the optical band gap is reduced by a 0.15 eV by encapsulation with graphene due to partial restoration of lattice distortions.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    62
    References
    4
    Citations
    NaN
    KQI
    []