Variability in real-world emissions and fuel consumption by diesel construction vehicles and policy implications.

2021 
Strategically reducing the emission of non-road mobile source especially diesel construction vehicle (DCV) has a large potential in improving air quality and has attracted much scientific and public attention in recent years around the world. In this study, we explored real-world fuel consumption rate and gaseous emissions factors for multiple pollutants of three typical DCVs in China. The sampling campaign considered the operation mode, cumulative operation hour, emission standard stage and engine power. Results show that the accumulated fuel consumption per hour of vehicle weight for working, load-free moving and idling modes was 0.3, 0.2 and 0.1 kg/h·tons, respectively. The fuel-based NOx emission factor exhibited a bimodal distribution at 27 and 41 g/kg. The fuel-based emission factors for volatile organic compounds (VOCs) were in the range of 0.8 to 2.6 g/kg, where alkene and alkane were the dominant components (>80%), i.e., ethylene, acetylene, propylene, and isobutane. We observed that the ratio of toluene and benzene concentration (T/B) (1.4 ± 1.3) differed from other key emission sources and may be used as the specific indicator of DCV emission exhaust. Our estimates suggest that in 2017 the fuel consumption and NOx emissions of DCV emission accounted for 22-28% of non-road mobile sources in China; NOX emissions were 2.7 times higher than those in 2006, and it is forecasted that NOx emissions would reduce by 23% between 2017 and 2025 with the implementation of stage IV and the strict supervision policy. The comprehensive dataset on DCV emissions will either guide the government to establish precise and effective policies to regulate the non-road mobile source or significantly improve our understanding of source apportionment of atmospheric NOx and VOCs, both of which are key precursors of haze and ozone pollution.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    46
    References
    4
    Citations
    NaN
    KQI
    []