The consistency of chemical clocks among coeval stars

2021 
The abundance ratios of some chemical species have been found to correlate with stellar age, leading to the possibility of using stellar atmospheric abundances as stellar age indicators. These chemical clocks have been calibrated with solar-twins, open clusters and red giants, but it remains to be seen whether they can be effective at identifying coeval stars in a field population that spans a broad parameter space (i.e., the promise of chemical tagging). Since the components of wide binaries are known to be stars of common origins, they constitute ideal laboratories for testing the usefulness of chemical clocks for the age dating of field stars. We determined the abundances of a new sample of 5 binaries and collected data for other 31 systems from the literature in order to test the applicability of chemical clocks. We recover the well known result that the components of wide binaries have more consistent chemistry than that of random pairs. However, we also show for the first time that abundance ratios designed as chemical clocks are even more consistent among the components of wide binaries than their [X/Fe] ratios. Not only that, but the special case of the pair HIP 34426/HIP 34407 may indicate that chemical clocks are consistent for coeval stars even when the individual abundances are not. If the assumption that chemical clocks are reliable age indicators is correct, this would constitute first quantitative, statistically significant evidence that the components of wide binaries in the Galactic field are indeed coeval, validating a large body of published work that relies on that to be the case. Moreover, our results provide strong evidence that chemical clocks indeed carry important information about stellar birthplaces and chemical evolution, and thus we propose that including them in chemical tagging efforts may facilitate the identification of nowadays dissolved stellar groups.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    84
    References
    1
    Citations
    NaN
    KQI
    []