The SAMI Galaxy Survey: revisiting galaxy classification through high-order stellar kinematics

2017 
Recent cosmological hydrodynamical simulations suggest that integral field spectroscopy can connect the high-order stellar kinematic moments h_3 (~skewness) and h_4 (~kurtosis) in galaxies to their cosmological assembly history. Here, we assess these results by measuring the stellar kinematics on a sample of 315 galaxies, without a morphological selection, using two-dimensional integral field data from the SAMI Galaxy Survey. Proxies for the spin parameter (λ_(R_e)) and ellipticity (e_e) are used to separate fast and slow rotators; there exists a good correspondence to regular and non-regular rotators, respectively, as also seen in earlier studies. We confirm that regular rotators show a strong h_3 versus V/σ anti-correlation, whereas quasi-regular and non-regular rotators show a more vertical relation in h_3 and V/σ. Motivated by recent cosmological simulations, we develop an alternative approach to kinematically classify galaxies from their individual h_3 versus V/σ signatures. Within the SAMI Galaxy Survey, we identify five classes of high-order stellar kinematic signatures using Gaussian mixture models. Class 1 corresponds to slow rotators, whereas Classes 2–5 correspond to fast rotators. We find that galaxies with similar λ_(R_e) - e_e values can show distinctly different h_3 - V/σ signatures. Class 5 objects are previously unidentified fast rotators that show a weak h_3 versus V/σ anti-correlation. From simulations, these objects are predicted to be disk-less galaxies formed by gas-poor mergers. From morphological examination, however, there is evidence for large stellar disks. Instead, Class 5 objects are more likely disturbed galaxies, have counter-rotating bulges, or bars in edge-on galaxies. Finally, we interpret the strong anti-correlation in h_3 versus V/σ as evidence for disks in most fast rotators, suggesting a dearth of gas-poor mergers among fast rotators.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    156
    References
    115
    Citations
    NaN
    KQI
    []