Transcriptome analysis reveals physiological characteristics required for magnetosome formation in Magnetospirillum gryphiswaldense MSR‐1

2016 
Summary Magnetosome synthesis ability of Magnetospirillum gryphiswaldense MSR-1 in an autofermentor can be precisely controlled through strict control of dissolved oxygen concentration. In this study, using transcriptome data we discovered gene transcriptional differences and compared physiological characteristics of MSR-1 cells cultured under aerobic (high-oxygen) and micro-aerobic (low-oxygen) conditions. The results showed that 77 genes were up-regulated and 95 genes were down-regulated significantly under micro-aerobic situation. These genes were involved primarily in the categories of cell metabolism, transport, regulation and unknown-function proteins. The nutrient transport and physiological metabolism were slowed down under micro-aerobic condition, whereas dissimilatory denitrification pathways were activated and it may supplemental energy was made available for magnetosome synthesis. The result suggested that the genes of magnetosome membrane proteins (Mam and Mms) are not directly regulated by oxygen level, or are constitutively expressed. A proposed regulatory network of differentially expressed genes reflects the complexity of physiological metabolism in MSR-1, and suggests that some yet-unknown functional proteins play important roles such as ferric iron uptake and transport during magnetosome synthesis. The transcriptome data provides a holistic view of the responses of MSR-1 cells to differing oxygen levels. This approach will give new insights into general principles of magnetosome formation.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    50
    References
    13
    Citations
    NaN
    KQI
    []