Structural basis of redox modulation on chloroplast ATP synthase.

2020 
In higher plants, chloroplast ATP synthase has a unique redox switch on its γ subunit that modulates enzyme activity to limit ATP hydrolysis at night. To understand the molecular details of the redox modulation, we used single-particle cryo-EM to determine the structures of spinach chloroplast ATP synthase in both reduced and oxidized states. The disulfide linkage of the oxidized γ subunit introduces a torsional constraint to stabilize the two β hairpin structures. Once reduced, free cysteines alleviate this constraint, resulting in a concerted motion of the enzyme complex and a smooth transition between rotary states to facilitate the ATP synthesis. We added an uncompetitive inhibitor, tentoxin, in the reduced sample to limit the flexibility of the enzyme and obtained high-resolution details. Our cryo-EM structures provide mechanistic insight into the redox modulation of the energy regulation activity of chloroplast ATP synthase. Jay-How Yang et al. use single-particle cryo-EM to determine the structures of spinach chloroplast ATP synthase in reduced and oxidized states. They report a torsional constraint in the oxidized γ subunit that is alleviated by free cysteines in the reduced state. Their work provides mechanistic insights into the redox modulation of the ATP synthesis by the chloroplast ATP synthase.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    72
    References
    5
    Citations
    NaN
    KQI
    []