Theoretical Study of the Reaction of the Methylidyne Radical (CH; X2Π) with 1-Butyne (CH3CH2CCH; X1A').

2021 
Ab initio CCSD(T)-F12/cc-pVTZ-f12//ωB97X-D/6-311G(d,p) + ZPE[ωB97X-D/6-311G(d,p)] calculations were carried out to unravel the area of the C5H7 potential energy surface accessed by the reaction of the methylidyne radical with 1-butyne. The results were utilized in Rice-Ramsperger-Kassel-Marcus calculations of the product branching ratios at the zero pressure limit. The preferable reaction mechanism has been shown to involve (nearly) instantaneous decomposition of the initial reaction adducts, whose structures are controlled by the isomeric form of the C4H6 reactant. If CH adds to the triple C≡C bond in the entrance reaction channel, the reaction is predicted to predominantly form the methylenecyclopropene + methyl (CH3) and cyclopropenylidene + ethyl (C2H5) products roughly in a 2:1 ratio. CH insertion into a C-H bond in the methyl group of 1-butyne is anticipated to preferentially form ethylene + propargyl (C3H3) by the C-C bond β-scission in the initial complex, whereas CH insertion into C-H of the CH2 group would predominantly produce vinylacetylene + methyl (CH3) also by the C-C bond β-scission in the adduct. The barrierless and highly exoergic CH + 1-butyne reaction, facile in cold molecular clouds, is not likely to lead to the carbon skeleton molecular growth but generates C4H4 isomers methylenecyclopropene, vinylacetylene, and 1,2,3-butatriene and smaller C2 and C3 hydrocarbons such as methyl, ethyl, and propargyl radicals, ethylene, and cyclopropenylidene.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    33
    References
    0
    Citations
    NaN
    KQI
    []