Robustness of topological surface states against strong disorder observed in B i 2 T e 3 nanotubes

2016 
Three-dimensional topological insulators are characterized by Dirac-like conducting surface states, the existence of which has been confirmed in relatively clean metallic samples by angle-resolved photoemission spectroscopy, as well as by anomalous Aharonov-Bohm oscillations in the magnetoresistance of nanoribbons. However, a fundamental aspect of these surface states, namely, their robustness to time-reversal-invariant disorder, has remained relatively untested. In this work, we have synthesized thin nanotubes of $\mathrm{B}{\mathrm{i}}_{2}\mathrm{T}{\mathrm{e}}_{3}$ with extremely insulating bulk at low temperatures due to disorder. Nonetheless, the magnetoresistance exhibits quantum oscillations as a function of the magnetic field along the axis of the nanotubes, with a period determined by the cross-sectional area of the outer surface. Detailed numerical simulations based on a recursive Green function method support that the resistance oscillations are arising from the topological surface states which have substantially longer localization length than that of other nontopological states. This observation demonstrates coherent transport at the surface even for highly disordered samples, thus providing a direct confirmation of the inherently topological character of surface states. The result also demonstrates a viable route for revealing the properties of topological states by suppressing the bulk conduction using disorder.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    21
    Citations
    NaN
    KQI
    []