Preliminary Study on the Magnetic Properties of GeMn Nanocolumn/Ge Multilayers

2020 
Ge0.94Mn0.06 nanocolumn thin film is a unique phase of GeMn diluted magnetic semiconductors (DMS) which exhibit Curie temperature (TC) > 400 K. The multilayers of Ge0.94Mn0.06 nanocolumns separated by nano-scaled spacers represent great interests for spintronic applications, such as spin valves or giant magneto-resistance (GMR) multilayers. In this article, we present the results obtained from the preliminary study on the exchange coupling in two types of GeMn nanocolumn/Ge multilayers. All the samples have been grown using molecular beam epitaxy (MBE). The superconducting quantum interference device (SQUID) magnetometer has been used to determine the magnetic properties of the samples. In the multilayer system Ge/[Ge0.94Mn0.06(40 nm)/Ge(d nm)]9/Ge0.94Mn0.06(40 nm)/Ge, no exchange coupling can be observed. Inversely, exchange coupling between the layers exists and depends on the thickness of the Ge spacers for the GeMn nanocolumns/Ge multilayer spin valve systems. The exchange coupling in the nanocolumns multilayer systems has been shown to be complex due to the leakage field induced by neighboring nanocolumns and the magnetic anisotropy of nanocolumns.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    12
    References
    0
    Citations
    NaN
    KQI
    []