Tannic acid-directed synthesis of magnetic and boronic acid-functionalized metal-organic frameworks for selective extraction and quantification of catecholamines in human urine.

2021 
A novel magnetic borate-functionalized metal-organic framework nanocomposite was designed and fabricated for selective enrichment of catecholamines from human urine. Firstly, the polytannic acid (PTA) layer with natural low-cost and ecofriendly polyphenol tannic acid as the organic ligand and Fe3+ as the cross-linker was coated onto the surface of Fe3O4. Then, the borate-functionalized metal-organic framework (MIL-100(Fe)-B) with 5-boronobenzene-1,3-dicarboxylic acid as a ligand fragment was modified onto the PTA-coated Fe3O4 through a metal-ligand-fragment coassembly strategy. The obtained smart porous adsorbent Fe3O4@PTA@MIL-100(Fe)-B was confirmed by means of several characterization methods and then applied as an effective magnetic solid phase extraction (MSPE) sorbent for specific extraction of trace catecholamines in human urine. The Plackett–Burman design was used for screening the variables significantly affecting the extraction efficiency. Then, the significant factors were further investigated by the Box–Behnken design to determine the optimal extraction conditions. Under the optimal conditions, a method for selective MSPE combined with high-performance liquid chromatography with a fluorescence detector for the quantitation of catecholamines in human urine was developed and validated. With the proposed method, the linearity range was from 0.500 to 500 ng mL−1 for norepinephrine and epinephrine and from 1.00 to 500 ng mL−1 for dopamine. The detection limits were 0.050, 0.11, and 0.20 ng mL−1 for norepinephrine, epinephrine, and dopamine, respectively. The recoveries from spiking experiments varied from 91.5 to 108% with relative standard deviations (RSDs) of 0.80–4.8%. The established method is rapid, sensitive, accurate, inexpensive, and ecofriendly and was successfully applied to the determination of the target catecholamines in human urine samples.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    32
    References
    0
    Citations
    NaN
    KQI
    []