Non-reciprocal wave transmission in a bilinear spring-mass system.

2019 
Significant amplitude-independent and passive non-reciprocal wave motion can be achieved in a one dimensional (1D) discrete chain of masses and springs with bilinear elastic stiffness. Some fundamental asymmetric spatial modulations of the bilinear spring stiffness are first examined for their non-reciprocal properties. These are combined as building blocks into more complex configurations with the objective of maximizing non-reciprocal wave behavior. The non-reciprocal property is demonstrated by the significant difference between the transmitted pulse displacement amplitudes and energies for incidence in opposite directions. Extreme non-reciprocity is realized when almost-zero transmission is achieved for the propagation from one direction with a noticeable transmitted pulse for incidence from the other. These models provide the basis for a class of simple 1D non-reciprocal designs and can serve as the building blocks for more complex and higher dimensional non-reciprocal wave systems.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    24
    References
    0
    Citations
    NaN
    KQI
    []