Canonical retinotopic shifts under an inverse force field explain predictive remapping

2021 
Saccadic eye-movements allow us to bring visual objects of interest to high-acuity central vision. Although saccades cause large displacements of retinal images, our percept of the visual world remains stable. Predictive remapping — the ability of cells in retinotopic brain areas to transiently exhibit spatio-temporal retinotopic shifts beyond the spatial extent of their classical receptive fields — has been proposed as a primary mechanism that mediates this seamless visual percept. Despite the well documented effects of predictive remapping, no study to date has been able to provide a mechanistic account of the neural computations and architecture that actively mediate this ubiquitous phenomenon. Borne out by the spatio-temporal dynamics of peri-saccadic sensitivity to probe stimuli in human subjects, we propose a novel neurobiologically inspired phenomenological model in which the underlying peri-saccadic attentional and oculomotor signals manifest as three temporally overlapping forces that act on retinotopic brain areas. These three forces — a compressive one toward the center of gaze, a convergent one toward the saccade target and a translational one parallel to the saccade trajectory — act in an inverse force field and specify the spatio-temporal window of predictive remapping of population receptive fields.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    60
    References
    0
    Citations
    NaN
    KQI
    []