MiR-139-5p has an antidepressant-like effect by targeting phosphodiesterase 4D to activate the cAMP/PKA/CREB signaling pathway.

2021 
Background Phosphodiesterase 4D (PDE4D) inhibitor is commonly used to treat depression, but side effects seriously decrease its efficacy. PDE4D was a downstream target mRNA of miR-139-5p. Therefore, we examined the effects of hippocampal miR-139-5p gain- and loss-of-function on depression-like behaviors, the expression level of PDE4D, and hippocampus neurogenesis. Methods Bioinformatic analyses were carried out to to screen differential genes. Quantitative real-time polymerase chain reaction (qRT-PCR) and luciferase reporter assay were used to confirm the relationship between miR-139-5p and PDE4D. MiR-139-5p mimics, miR-139-5p inhibitor, or miR-NC were used to explore the function of miR-139-5p in HT-22 cells. We further explored the role of miR-139-5p in vivo using AAV-injection. Elisa, western blotting, and fluorescence in situ hybridization (FISH) were used to detect the expression of miR-139-5p and PDE4D in CRC tissues. Results Here, we showed that PDE4D messenger RNA (mRNA) was a direct target of microRNA (miR)-139-5p, which was downregulated in a chronic ultra-mild stress (CUMS)-induced depression mouse model. Moreover, in experiments in vitro, miR-139-5p mimic repressed PDE4D expression in HT-22 cells, but promoted phosphorylated cyclic-AMP response element-binding protein (p-CREB) and brain-derived neurotrophic factor (BDNF) expression. Interestingly, adeno-associated virus (AAV)-miR-139-5p downregulated susceptibility to stress-induced depression-like behaviors in mice. AAV-miR-139-5p suppressed PDE4D in mouse hippocampal cells, increasing expression level of cyclic adenosine monophosphate (cAMP), p-CREB, and BDNF, and stimulating mouse hippocampal neurogenesis. Conclusions Our findings suggested that miR-139-5p acted like an antidepressant by targeting PDE4D, thereby regulating the cAMP/protein kinase A (PKA)/CREB/BDNF pathway to improve depression.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    34
    References
    0
    Citations
    NaN
    KQI
    []