Evoked potentials during voice error detection at register boundaries

2014 
Singers require great effort to avoid vocal distortion at register boundaries, as they are trained to diminish the prominence of register breaks. We examined neural mechanisms underlying voice error detection in singers at their register boundaries. We hypothesized that event-related potentials (ERPs), reflecting brain activity, would be larger if a singer’s pitch was unexpectedly shifted toward, rather than away, from their register break. Nine trained singers sustained a musical note for ~3 seconds near their modal register boundaries. As the singers sustained these notes, they heard their voice over headphones shift in pitch ( + /- 400 cents, 200 ms) either toward or away from the register boundary. This procedure was repeated for 200 trials. The N1 and P2 ERP amplitudes for three central electrodes (FCz, Cz, Fz) were computed from the EEGs of all participants. Results of a multivariate analysis of variance for shift direction ( + 400c, -400c) and register (low, high) showed significant differences in ...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []