Wear Characteristics of Dense Fine Particles Solid-Liquid Two-Phase Fluid Centrifugal Pump with Open Impellers

2021 
The demand for a centrifugal pump with open impellers for conveying dense fine particles in solid-liquid two-phase flow has increased significantly in actual engineering. The wear of dense fine particles on the centrifugal pump is also exceedingly prominent, which affects the engineering efficiency and economic benefits. The two-phase flow in the open centrifugal pump is three-dimensional and unsteady; the movement of high-volume concentration particles in the centrifugal pump and its mutual influence on the two-phase flow, which results in the calculation of wear, are very intricate. To study the wear characteristics of the centrifugal pump with open impeller with high-volume concentration particles more accurately, numerical simulation and experimental comparison are carried out for the impeller wear of dense fine particles transported by the centrifugal pump with open impellers. Considering the relationship between particles and walls, we used the Fluent 18.0 built-in rebound function and wear model. The RNG k-e model and the DDPM model were adopted in the numerical simulation, and the numerical solution for centrifugal pump wear was performed under flow rate (9.6 m3·h−1, 12.8 m3·h−1, 16 m3·h−1, and 19.2 m3·h−1), different particle sizes (0.048 mm, 0.106 mm, 0.15 mm, 0.27 mm, and 0.425 mm), and different particle volume concentrations (10%, 15%, 20%, 25%, and 30%), respectively. By comparing the serious wear positions of the impeller, the experimental results correspond well with the numerical simulation, which can be used to predict and study the wear characteristics of the impeller. The results show that the most serious area of blade wear is the middle part of the pressure surface, followed by the middle part of the upper part of the blade. The wear of the impeller is greatly affected by relevant parameters, such as pump flow rate, particle diameter, and particle volume concentration. These results can provide some basis for the wear-resistant design of dense fine particle impeller.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    32
    References
    0
    Citations
    NaN
    KQI
    []