Enhanced anti-tumor and anti-angiogenic efficacy of a novel liposomal fenretinide on human neuroblastoma

2013 
Abstract Neuroblastoma is an embryonal tumor originating from the simpatico-adrenal lineage of the neural crest. It approximately accounts for about 15% of all pediatric oncology deaths. Despite advances in multimodal therapy, metastatic neuroblastoma tumors at diagnosis remain a clinical challenge. Retinoids are a class of compounds known to induce both terminal differentiation and apoptosis/necrosis of neuroblastoma cells. Among them, fenretinide (HPR) has been considered one of the most promising anti-tumor agent but it is partially efficacious due to both poor aqueous solubility and rapid metabolism. Here, we have developed a novel HPR formulation, by which the drug was encapsulated into sterically stabilized nanoliposomes (NL[HPR]) according to the Reverse Phase Evaporation method. This procedure led to a higher structural integrity of liposomes in organic fluids for a longer period of time, in comparison with our previous liposomal formulation developed by the film method. Moreover, NL[HPR] were further coupled with NGR peptides for targeting the tumor endothelial cell marker, aminopeptidase N (NGR-NL[HPR]). Orthotopically xenografted neuroblastoma-bearing mice treated with NGR-NL[HPR] lived statistically longer than mice untreated or treated with free HPR (NGR-NL[HPR] vs both control and HPR: P P P
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    42
    References
    29
    Citations
    NaN
    KQI
    []