奈米粒子應用於NAD(P)H: 醌氧化還原酶1、銀離子與鎘離子檢測

2013 
(1) Quinone modified Mn-Doped ZnS Quantum Dots for Room Temperature Phosphorescence sensing of NQO1 A new room-temperature phosphorescence NAD(P)H: quinone oxidoreductase isozyme 1 (NQO1) sensor was developed by using quinone-modified Mn-doped ZnS quantum dots (Q-ZnS(Mn2+) QDs). It can selectively detect NQO1 in vitro and vivo through phosphorescence generated by reduction-initiated removal of quinones on its surface with NQO1. Enzyme kinetics of NQO1 was measured by phosphorescence enhancement of Q-ZnS(Mn2+) QDs revealed its highly catalytic activity towards Q-ZnS(Mn2+) QDs. High viability of cells in presence of Q-ZnS(Mn2+) QDs showed the low cytotoxicity to A549 cells from MTT assay. Therefore, Q-ZnS(Mn2+) QDs can be applied to detect NQO1 which is overexpressed in cytoplasma and nucleus of cancer cells. We successfully developed a highly selective room-temperature phosphorescent probe to detect the human cancer cells with the overexpressed NQO1 (2) Highly selective and sensitive colorimetric detection of Ag(I) using N-1-(2-mercaptoethyl)adenine functionalized gold nanoparticles A sensitive and selective colorimetric Ag+ detection method was developed by using N-1-(2-mercaptoethyl)adenine functionalized gold nanoparticles (MEA-AuNPs). The presence of Ag+ immediately induced aggregation of MEA-AuNPs, yielding a color change from wine-red to purple. This Ag+-induced aggregation of MEA-AuNPs was monitored by bare eye and UV-vis spectroscopy with a detection limit of 3.3 nM. MEA-AuNPs showed excellent selectivity toward Ag+ compared with other metal ions through interaction between adenine and Ag+. The best detection of Ag+ was achieved at pH 6-9. Furthermore, MEA-AuNPs were applied to detect Ag+ in lake water with low interference. (3) Colorimetric detection of Cd(II) ions based on di(1H-pyrrol-2-yl)methanethione functionalized gold nanoparticles A sensitive and selective colorimetric Cd2+ detection method was developed using di(1H-pyrrol-2-yl)methanethione functionalized gold nanoparticles (DP-AuNPs). Aggregation of DP-AuNPs was induced immediately in the presence of Cd2+, yielding a color change from wine-red to purple. This Cd2+-induced aggregation of DP-AuNPs was monitored using the naked eye and UV-Vis spectroscopy with a detection limit of 16.6 nM. The DP-AuNPs showed excellent selectivity toward Cd2+ compared to other metal ions through the interaction between di(1H-pyrrol-2-yl)methanethione and Cd2+. Optimal detection of Cd2+ was achieved over a pH range from 4 to 9.5. Furthermore, DP-AuNPs were applied to detect Cd2+ in lake water, showing low interference.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []