Differential patterns of extracellular signal-regulated kinase-1 and -2 phosphorylation in rat limbic brain regions after short-term and long-term inhibitory avoidance learning.

2006 
Activation of the extracellular signal-regulated kinase-1 and -2 has been shown to be required for neural plasticity and memory. Previous pharmacological studies have demonstrated that inhibition of extracellular signal-regulated kinase-1 and -2 blocks inhibitory avoidance retention. The aim of the present study was to investigate the different neural substrates underlying short- and long-term inhibitory avoidance learning and memory in rats using phosphorylated extracellular signal-regulated kinase-1 and -2 labeling as an index of plasticity. Short- and long-term retention tests were given 10 min or 24 h after inhibitory avoidance training. A significant elevation in the number of phosphorylated extracellular signal-regulated kinase-1 and -2-immunoreactive neurons was observed in area 1 of anterior cingulate cortex, the secondary motor cortex, lateral orbital cortex, claustrum, and the medial amygdala nucleus after the short-term inhibitory avoidance test. After the long-term retention test, phosphorylated extracellular signal-regulated kinase-1 and -2-immunoreactive neurons were localized in area 1 of anterior cingulate cortex, prelimbic cortex, and the central nucleus of amygdala. This suggests that phosphorylated extracellular signal-regulated kinase-1 and -2-immunoreactivity may reveal different brain regions involved in the storage of short- and long-term aversive memories.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    49
    References
    7
    Citations
    NaN
    KQI
    []