Effect of Ligand Fields on the Reactivity of O2‐Activating Iron(II)‐Benzilate Complexes of Neutral N5 Donor Ligands

2020 
Three new iron(II)-benzilate complexes [(N4Py)Fe(II) (benzilate)]ClO4 (1), [(N4Py(Me2) )Fe(II) (benzilate)]ClO4 (2) and [(N4Py(Me4) )Fe(II) (benzilate)]ClO4 (3) of neutral pentadentate nitrogen donor ligands have been isolated and characterized to study their dioxygen reactivity. Single-crystal X-ray structures reveal a mononuclear six-coordinate iron(II) center in each case, where benzilate binds to the iron center in monodentate mode via one carboxylate oxygen. Introduction of methyl groups in the 6-positions of the pyridine rings makes the N4Py(Me2) and N4Py(Me4) ligand fields weaker compared to that of the parent N4Py ligand. All the complexes (1-3) react with dioxygen to decarboxylate the coordinated benzilate to benzophenone quantitatively. The decarboxylation is faster for the complex of the more sterically hindered ligand and follows the order 3>2>1. The complexes display oxygen atom transfer reactivity to thioanisole and also exhibit hydrogen atom transfer reactions with substrates containing weak C-H bonds. Based on interception studies with external substrates, labelling experiments and Hammett analysis, a nucleophilic iron(II)-hydroperoxo species is proposed to form upon two-electron reductive activation of dioxygen by each iron(II)-benzilate complex. The nucleophilic oxidants are converted to the corresponding electrophilic iron(IV)-oxo oxidant upon treatment with a protic acid. The high-spin iron(II)-benzilate complex with the weakest ligand field results in the formation of a more reactive iron-oxygen oxidant.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    53
    References
    3
    Citations
    NaN
    KQI
    []