Isolation and characterization of a new bacteriochlorophyll-c bearing a neopentyl substituent at the 8-position from the bciD-deletion mutant of the brown-colored green sulfur bacterium Chlorobaculum limnaeum

2014 
We recently constructed the mutant of the brown-colored green sulfur bacterium Chlorobaculum limnaeum lacking BciD which was responsible for formation of a formyl group at the 7-position in bacteriochlorophyll(BChl)-e biosynthesis. This mutant exclusively gave BChl-c, but not BChl-e, as the chlorosome pigments (Harada et al. in PLoS One 8(4):e60026, 2013). By the mutation, the homolog and epimer composition of the pigment was drastically altered. The methylation at the 82-position in the mutant cells proceeded to create BChl-c carrying large alkyl substituents at this position. Correspondingly, the content of BChls-c having the (S)-configuration at the chiral 31-position remarkably increased and accounted for 80.6 % of the total BChl-c. Based on the alteration of the pigment composition in the mutant cells, a new BChl-c bearing the bulkiest, triple 82-methylated neopentyl substituent at the 8-position ([N,E]BChl-c) was identified. The molecular structure of [N,E]BChl-c was fully determined by its NMR, mass, and circular dichroism spectra. The newly identified [N,E]BChl-c was epimerically pure at the chiral 31-position and its stereochemistry was determined to be an (S)-configuration by modified Mosher’s method. Further, the effects of the C82-methylation on the optical absorption properties of monomeric BChls-c were investigated. The Soret but not Qy absorption bands shifted to longer wavelengths by the extra methylation (at most 1.4 nm). The C82-methylation induced a slight but apparent effect on absorption properties of BChls-c in their monomeric states.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    39
    References
    13
    Citations
    NaN
    KQI
    []