Use of Refraction, Reflection And Wave-equation -based Tomography For Imaging Beneath the Shallow Gas: A Trinidad Field Data Example

2007 
Shallow localized gas pockets cause challenging problems in seismic imaging because of sags and wipe-out zones they produce on imaged reflectors deep in the section. In addition, the presence of shallow gas generates strong surface-related and interbed multiples, making velocity updating very difficult. When localized gas pockets are very shallow, we have limited information to build a near-surface velocity model using ray-based reflection tomography alone. Diving-wave refraction tomography successfully builds a starting model for the very shallow part. Usual ray-based reflection tomography using single-parameter hyperbolic moveout might need many iterations to update the deeper part of the velocity model. In addition, the method generates a low-velocity anomaly in the deeper part of the model. We present an innovative method for building the final velocity model by combining refraction, reflection, and wave-equation-
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    5
    References
    5
    Citations
    NaN
    KQI
    []