The recent development of fluorescent probes for the detection of NADH and NADPH in living cells and in vivo

2020 
Abstract Reduced nicotinamide adenine dinucleotide (NADH) and its phosphate ester (NADPH) participate in numerous metabolic processes in living cells as electron carriers. The levels of NADH and NADPH in a cell are closely related to its metabolic and pathological state. It is important to monitor the levels of NADH and NADPH in living cells and in vivo in real-time. This review mainly focuses on fluorescent probes developed for monitoring NADH and NADPH in living cells and in vivo, and classifies them according to the recognition units. These fluorescence probes can rapidly respond to changes in NADH and NADPH levels without interference from other biomolecules, both in cell culture and in vivo. These probes have been employed to monitor NADH and NADPH levels in living cells, tumor spheroids, and in vivo; moreover, some of them can be used to discriminate normal cells from cancer cells, and detect cancer cell death due to reductive stress induced by natural antioxidants. This review is expected to inspire the generation of novel fluorescent probes for the detection of NADH and NADPH, and stimulate more attention in the development of fluorescent probes based on carbon dots and nanoparticles, as well as metal complex-based, time-gated luminescent probes for monitoring NADH and NADPH in both living cells and in vivo.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    76
    References
    3
    Citations
    NaN
    KQI
    []