Analysis of a Streptomyces antibioticus chromosomal region involved in oleandomycin biosynthesis, which encodes two glycosyltransferases responsible for glycosylation of the macrolactone ring

1998 
A 6-kb region from the chromosome of Streptomyces antibioticus, an oleandomycin producer, was cloned and sequenced. This region was located between the 3′ end of the gene encoding the third subunit of the oleandomycin type I polyketide synthase and the oleP and oleB genes, which encode a cytochrome P450 monooxygenase and an oleandomycin resistance gene, respectively. Analysis of the nucleotide sequence revealed the presence of five genes encoding a cytochrome P450-like protein (oleP1), two glycosyltransferases (oleG1 and oleG2) involved in the transfer of the two 6-deoxysugars (L-oleandrose and D-desosamine) to the oleandomycin macrolactone ring, a methyltransferase (oleM1), and a gene (oleY) of unknown function. Insertional inactivation of this region by gene disruption generated an oleandomycin non-producing mutant which accumulated a compound that, according to mass spectrometry analysis, could correspond to the oleandomycin macrolactone ring (oleandolide), suggesting that the mutation affects oleandrosyl glycosyltransferase.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    39
    References
    64
    Citations
    NaN
    KQI
    []