MTI-101 (cyclized HYD1) binds a CD44 containing complex and induces necrotic cell death in multiple myeloma

2013 
Our laboratory recently reported that treatment with the d-amino acid containing peptide HYD1 induces necrotic cell death in multiple myeloma (MM) cell lines. Due to the intriguing biological activity and promising in vivo activity of HYD1, we pursued strategies for increasing the therapeutic efficacy of the linear peptide. These efforts led to a cyclized peptidomimetic, MTI-101, with increased in vitro activity and robust in vivo activity as single agent using two myeloma models that consider the bone marrow microenvironment. MTI-101 treatment similar to HYD1 induced reactive oxygen species, depleted ATP levels and failed to activate caspase 3. Moreover, MTI-101 is cross-resistant in H929 cells selected for acquired resistance to HYD1. Here, we pursued an unbiased chemical biology approach using biotinylated peptide affinity purification and LC-MS/MS analysis to identify binding partners of MTI-101. Using this approach CD44 was identified as a predominant binding partner. Reducing the expression of CD44 was sufficient to induce cell death in MM cell lines, indicating that MM cells require CD44 expression for survival. Ectopic expression of CD44s correlated with increased binding of the FAM-conjugated peptide. However ectopic expression of CD44s was not sufficient to increase the sensitivity to MTI-101 induced cell death. Mechanistically, we show that MTI-101 induced cell death occurs via a Rip1, Rip3 or Drp1 dependent and independent pathway. Finally, we show that MTI-101 has robust activity as a single agent in the SCID-Hu bone implant and 5TGM1 in vivo model of multiple myeloma.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    54
    References
    21
    Citations
    NaN
    KQI
    []