EPR characterization of the iron-sulfur clusters in the NADH: ubiquinone oxidoreductase segment of the respiratory chain in Paracoccus denitrificans.

1987 
Abstract The physicochemical properties of the iron-sulfur clusters present in the NADH:ubiquinone oxidoreductase of Paracoccus denitrificans have been examined in the cytoplasmic membrane particles by redox potentiometry and EPR spectroscopy. Analogous to the iron-sulfur clusters present in the mitochondrial NADH: ubiquinone oxidoreductase, we have found two binuclear and three tetranuclear EPR detectable iron-sulfur clusters, namely, N-1a, N-1b, N-2, N-3, and N-4. In the bacterial system, the two binuclear clusters differ in line shape and in Em values; the cluster with more rhombic symmetry (gx,y,z = 1.918, 1.937, 2.029) has the Em7.0 value of -150 while the almost axial one (gx,y,z = 1.929, 1.941, 2.019) has Em7.0 of -270 mV. The Em of the former cluster is pH dependent (-60 mV/pH) as in the case of mammalian N-1a while the latter is pH independent as is the mammalian cluster N-1b. The pH-dependent P. denitrificans [2Fe-2S] cluster, which we have labeled N-1a, has an Em7.0 as high as that of N-2, in contrast to the mammalian N-1a. Thus N-1a is reducible with a physiological reductant, NADH in this bacterial system. The Em of the cluster N-2 is also pH dependent (Em7.0 = -130 mV) with a pK value near 7.7. The Em values of all other clusters exhibit no pH dependence as in the case of their mammalian counterparts. We have found that the cluster N-1a is the most labile component among the five iron-sulfur clusters and may give rise to variable relative spin concentrations and extremely low Em values due to the facile modifications of the microenvironment of the cluster. The P. denitrificans NADH:ubiquinone oxidoreductase provides a unique and useful site I model system where redox composition is similar to the mitochondrial enzyme but with fewer numbers of polypeptides (Yagi, T. (1986) Arch. Biochem. Biophys. 250, 302-311).
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    39
    References
    58
    Citations
    NaN
    KQI
    []