Structural evolution and electrical properties of Na0.5Bi0.5TiO3-CoFe2O4 ceramics with embedded structures

2018 
Abstract Lead-free 0.9Na 0.5 Bi 0.5 TiO 3 − 0.1CoFe 2 O 4 (0.9NBT-0.1CFO) composite ceramics with novel embedded microstructures were synthesized by an in-situ sol-gel method. The structural evolution, ferroelectricities and dielectricities were studied. The embedded structures were formed around 1000 °C − 1100 °C with contributions of the strong grain boundary mobility and small size of CFO grains, and then were destroyed at 1150 °C. The 0.9NBT-0.1CFO ceramic sintered at 1100 °C showed the optimal ferroelectric hysteresis loop with a remanent polarization of ~ 52 μC/cm 2 . Anomaly peaks in the temperature dependent permittivity curves were observed in all ceramics with embedded structures. These Debye-like type peaks generated by the interface effects of NBT and CFO appeared around ~620 °C, and could reach relatively large values of ~15000 at 100 kHz. The change rate of permittivity between zero magnetic field and 500 Oe reached 2.4%, indicating a noteworthy magnetoelectric effect.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    44
    References
    4
    Citations
    NaN
    KQI
    []