Electrowetting of a nano-suspension on a soft solid

2019 
The wetting of solid surfaces can be manoeuvred by altering the energy balance at the interfacial region. While electric field acts favourably to spread a droplet on a rigid surface, this tendency may be significantly suppressed over soft surfaces, considering a part of the interfacial energy being utilized to deform the solid elastically by capillary forces. Here, we bring out a unique mechanism by virtue of which addition of nano-particles to the droplet brings in a favourable recovery of the electro-spreading characteristics of a soft surface, by realizing an alteration in the effective dielectric constant of the interfacial region. Our experiments further demonstrate that this mechanism ceases to be operative beyond a threshold volume fraction of the particle suspension, due to inevitable contact line pinning. We also develop a theory to explain our experimental observations. Our findings provide a non-contact mechanism for meniscus spreading and droplet control, bearing far-reaching implications in biology and engineering.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    56
    References
    1
    Citations
    NaN
    KQI
    []