Fully nonlocal, monogamous, and random genuinely multipartite quantum correlations.

2012 
Local measurements on bipartite maximally entangled states can yield correlations that are maximally nonlocal, monogamous, and with fully random outcomes. This makes these states ideal for bipartite cryptographic tasks. Genuine-multipartite nonlocality constitutes a stronger notion of nonlocality in the multipartite case. Maximal genuine-multipartite nonlocality, monogamy, and random outcomes are thus highly desired properties for genuine-multipartite cryptographic scenarios. We prove that local measurements on any Greenberger-Horne-Zeilinger state can produce correlations that are fully genuine-multipartite nonlocal, monogamous, and with fully random outcomes. A key ingredient in our proof is a multipartite chained Bell inequality detecting genuine-multipartite nonlocality, which we introduce. Finally, we discuss applications to device-independent secret sharing.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    20
    References
    41
    Citations
    NaN
    KQI
    []