Betavoltaic and photovoltaic energy conversion in three-dimensional macroporous silicon diodes

2007 
A three-dimensional p-n diode structure is presented for the generation of energy via photovoltaic and betavoltaic modes of operation. Macroporous Silicon (MPS) has a large degree of internal surface area and its vertically oriented pores, which extend deep into the bulk of the Si substrate, allow for the creation of three-dimensional structures. In this device the MPS will not only serve as a means for creating 3D diode structures, it will also serve as a host matrix for a tritium isotope which emits energetic beta particles. By varying electrochemical etching conditions and using a prepatterning technique, 1.1 μm diameter pores with a spacing of 2.5 μm were achieved. The p-n junction was created using a rapid thermal process (RTP) which relies on the diffusion from an n-type solid source into the MPS. To ensure the quality of the diode structure, devices were tested using a light source which resulted in a photovoltaic response. Finally, betavoltaic operation was demonstrated by exposing devices to a tritium gas source. The average energy conversion efficiency of the first generation 3D diode was one order of magnitude higher than that of a similar planar device.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    11
    References
    42
    Citations
    NaN
    KQI
    []