Laser structured micro-targets generate MeV electron temperature at $4 \times 10^{16}$ W/cm$^2$

2021 
Relativistic temperature electrons higher than 0.5 MeV are generated typically with laser intensities of about 10$^{18}$ W/cm$^{2}$. Their generation with high repetition rate lasers that operate at non-relativistic intensities ($\simeq$10$^{16}$ W/cm$^{2}$) is cardinal for the realization of compact, ultra-short, bench-top electron sources. New strategies, capable of exploiting different aspects of laser-plasma interaction, are necessary for reducing the required intensity. We report here, a novel technique of dynamic target structuring of microdroplets, capable of generating 200 keV and 1 MeV electron temperatures at 1/100th of the intensity required by ponderomotive scaling($10^{18}$ W/cm$^2$) to generate relativistic electron temperature. Combining the concepts of pre-plasma tailoring, optimized scale length and micro-optics, this method achieves two-plasmon decay boosted electron acceleration with "non-ideal" ultrashort (25 fs) pulses at $4\times10^{16}$ W/cm$^2$, only. With shot repeatability at kHz, this precise in-situ targetry produces directed, imaging quality beam-like electron emission up to 6 MeV with milli-joule class lasers, that can be transformational for time-resolved, microscopic studies in all fields of science.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    19
    References
    0
    Citations
    NaN
    KQI
    []