Protein-Protein Interactions Induce pH-Dependent and Zeaxanthin-Independent Photoprotection in the Plant Light-Harvesting Complex, LHCII.

2021 
Plants use energy from the sun yet also require protection against the generation of deleterious photoproducts from excess energy. Photoprotection in green plants, known as nonphotochemical quenching (NPQ), involves thermal dissipation of energy and is activated by a series of interrelated factors: a pH drop in the lumen, accumulation of the carotenoid zeaxanthin (Zea), and formation of arrays of pigment-containing antenna complexes. However, understanding their individual contributions and their interactions has been challenging, particularly for the antenna arrays, which are difficult to manipulate in vitro. Here, we achieved systematic and discrete control over the array size for the principal antenna complex, light-harvesting complex II, using near-native in vitro membranes called nanodiscs. Each of the factors had a distinct influence on the level of dissipation, which was characterized by measurements of fluorescence quenching and ultrafast chlorophyll-to-carotenoid energy transfer. First, an increase in array size led to a corresponding increase in dissipation; the dramatic changes in the chlorophyll dynamics suggested that this is due to an allosteric conformational change of the protein. Second, a pH drop increased dissipation but exclusively in the presence of protein-protein interactions. Third, no Zea dependence was identified which suggested that Zea regulates a distinct aspect of NPQ. Collectively, these results indicate that each factor provides a separate type of control knob for photoprotection, which likely enables a flexible and tunable response to solar fluctuations.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    86
    References
    0
    Citations
    NaN
    KQI
    []