Flame retardant and the degradation mechanism of high impact polystyrene/Fe-montmorillonite nanocomposites

2008 
High impact polystyrene/Fe-montmorillonite (HIPS/Fe-MMT) nanocomposites were successfully prepared by melting intercalation. The nanostructures of HIPS/Fe-MMT were testified by X-ray diffraction (XRD) and transmission electron microscope (TEM). Corresponding to pure HIPS, the thermal stability of HIPS/Fe-MMT nanocomposites was notably improved. The peaks of heat release rate (PHRR) and the mass loss rate (MLR) were significantly reduced after the formation of the HIPS/Fe-MMT nanocomposites from cone calorimetry. And nanocomposites PHRR was further lower with the increase of Fe-MMT content in the range of 1 to 5 wt%. The degradation mechanism of HIPS and HIPS/Fe-MMT nanocomposites was conducted by pyrolysis gas chromatography mass spectrometry (Py-GC-MS). And the reason of the enhancement of thermal stability maybe is that structural iron is the operative site for radical trapping in the Fe-MMT and the nanostructure enhances the interaction of the chains of the HIPS.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    22
    References
    31
    Citations
    NaN
    KQI
    []