Self-consistent steady states in Hamiltonian mean field dynamics

2010 
Long-lived quasistationary states, associated with stationary stable solutions of the Vlasov equation, are found in systems with long-range interactions. Studies of the relaxation time in a model of $N$ globally coupled particles moving on a ring, the Hamiltonian Mean Field model (HMF), have shown that it diverges as $N^\gamma$ for large $N$, with $\gamma \simeq 1.7$ for some initial conditions with homogeneously distributed particles. We propose a method for identifying exact inhomogeneous steady states in the thermodynamic limit, based on analysing models of uncoupled particles moving in an external field. For the HMF model, we show numerically that the relaxation time of these states diverges with $N$ with the exponent $\gamma \simeq 1$. The method, applicable to other models with globally coupled particles, also allows us to evaluate exactly the stability limit of homogeneous steady states and to approximately relate the initial distribution to its corresponding steady state.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []