Electrochemical membrane reactor: Synthesis of quaternary ammonium hydroxide from its halide by in situ ion substitution

2009 
Electrochemical membrane reactors (EMRs) with two compartments (EMR-2: anion-exchange membrane (AEM) separated catholyte and anolyte) and three compartments (EMR-3: three compartments separated by two AEMs to avoid contact between the product and the electrodes) were developed for the synthesis of tetrabutylammonium hydroxide (TBAOH) from tetrabutylammonium bromide (TBABr) by in situ ion substitution. In house prepared AEM with good physicochemical, electrochemical properties and excellent stabilities was used. Schematic diagrams are presented for the possible synthesis of TBAOH from TBABr by in situ ion substitution in EMR-2 and EMR-3. Synthesis of TBAOH using EMR-2 and EMR-3 was achieved under different experimental conditions and process parameters (rate of synthesis, current efficiency (CE) and energy consumption) were estimated. In EMR-2, relatively slow synthesis of TBAOH with low recovery was explained due to Hofmann elimination of TBAOH in contact with the electrode. While in EMR-3, relatively faster rate of TBAOH synthesis with its high recovery and current efficiency indicated practical application of the developed process for the efficient synthesis of TBAOH without the use of any additives or reagents.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    32
    References
    30
    Citations
    NaN
    KQI
    []