Vitamin D receptor promotes global nucleotide excision repair by facilitating XPC dissociation from damaged DNA

2021 
Vitamin D receptor (VDR) is important for normal DNA repair, although the mechanism by which it acts is unclear. After focal UV irradiation to create subnuclear spots of DNA damage, epidermal keratinocytes from VDR-null mice as well as human epidermal keratinocytes depleted of VDR with small interfering RNA removed pyrimidine-pyrimidone (6-4) photoproducts more slowly than control cells. Costaining with antibodies to XPC, the DNA damage recognition sensor that initiates nucleotide excision repair, showed that XPC rapidly accumulated at spots of damage and gradually faded in control human keratinocytes. In VDR-depleted keratinocytes, XPC associated with DNA damage with comparable efficiency; however, XPC's dissociation dynamics were altered so that significantly more XPC was bound and retained over time than in control cells. The XPF endonuclease, which acts subsequently in nucleotide excision repair, bound and dissociated with comparable kinetics in control and VDR-depleted cells, but the extent of binding was reduced in the latter. These results as well as kinetic modeling of the data suggest that VDR's importance in the repair of UV-induced DNA damage is mediated in part by its ability to facilitate the dissociation of XPC from damaged DNA for the normal recruitment and assembly of other repair proteins to proceed.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    42
    References
    3
    Citations
    NaN
    KQI
    []