Nitric Oxide Attenuates Human Cytomegalovirus Infection yet Disrupts Neural Cell Differentiation and Tissue Organization

2021 
Human cytomegalovirus (HCMV) is a prevalent betaherpesvirus that is asymptomatic in healthy individuals but can cause serious disease in immunocompromised patients. HCMV is also the leading cause of viral-mediated birth defects. Many of these defects manifest within the central nervous system and include microcephaly, sensorineural hearing loss, and cognitive developmental delays. Nitric oxide is a critical effector molecule produced as a component of the innate immune response during infection. Using a 3-dimensional cortical organoid model, we demonstrate that nitric oxide inhibits HCMV spread and simultaneously disrupts neural rosette structures resulting in tissue disorganization. Nitric oxide also attenuates HCMV replication in 2-dimensional cultures of neural progenitor cells (NPCs), a prominent cell type in cortical organoids that differentiate into neurons and glial cells. The multipotency factor SOX2 was decreased during nitric oxide exposure, suggesting early neural differentiation is affected. Maximal mitochondrial respiration was also reduced in both uninfected and infected NPCs. We determined this reduction likely influences neural differentiation as neurons (Tuj1+GFAP-Nestin-) and glial populations (Tuj1-GFAP+Nestin-) were reduced following differentiation. We also observed changes in calcium signaling during exposure to nitric oxide with increased cellular response to ATP (purinergic receptors) and KCl (voltage gated calcium channels). Importantly, nitric oxide could not rescue HCMV-mediated defects in calcium response. Our studies indicate a prominent, immunopathogenic role of nitric oxide in promoting developmental defects within the brain despite its antiviral activity during congenital HCMV infection.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    97
    References
    0
    Citations
    NaN
    KQI
    []