Generation and Observation of Ultrafast Spectro-temporal Dynamics of Different Pulsating Solitons from a Fiber Laser

2020 
As a universal phenomenon in nonlinear optical systems, pulsating behaviors of solitons have attracted increasingly more investigations. While pulsating solitons and their likely generation conditions had been widely theoretical studied, their detailed spectro-temporal dynamics had been hardly reported in experiments. Here, three types of pulsating solitons are experimentally generated and observed in a dispersion-managed, hybrid mode-locked fiber laser. By controllably generating such states through intracavity tuning and leveraging the dispersive Fourier transform technique that maps spectral information into the time domain, real-time ultrafast spectro-temporal evolutions of the pulsating behaviors are revealed. The numerical results further show the generation of the pulsating soliton could be caused by the intracavity spectral filtering effect, consistent with the experimental configurations. Our findings could provide further insights into the complex nonlinear dynamics in lasers and potential ways to the design such systems to deliver targeted soliton outputs for potential applications.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    25
    References
    7
    Citations
    NaN
    KQI
    []