Ab initio calculations of magnetic properties of the interstitially doped YFe11Mo compound

2016 
The recent increase in the number of studies of RFe11–x M x compounds is related to their promising application as permanent magnets. However, the insufficiently high value of the Curie temperature T C of these compounds is a barrier to their widespread use. The increase in the Curie temperature of these compounds is achieved by doping with the light nonmetallic atoms such as hydrogen, nitrogen, and carbon. In this paper, it is shown numerically that this doping leads to drastic changes of the electronic band dispersions in a wide energy region around the Fermi level. This in turn changes values of the magnetic moments of ions and Heisenberg exchange interaction parameters. The values of ab initio calculated magnetic moments and direct exchange interaction parameters make it possible to calculate the Curie temperatures for both parent and nitrogen-doped compounds within the mean-field approach to the Heisenberg model in the sample of YFe11Mo, a typical representative of the R(Fe,M)12L class. Theoretical values of T C obtained for YFe11Mo and YFe11MoN (514 and 723 K respectively) are consistent with experimental ones (472 and 664 K) with an accuracy of 10%. Also, the calculated increase in T C upon nitrogenization (about 200 K) is in good agreement with the experimental data.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    28
    References
    1
    Citations
    NaN
    KQI
    []