Pocket-like active site of Rh1/MoS2 single-atom catalyst for selective crotonaldehyde hydrogenation.

2019 
Selective hydrogenation of unsaturated aldehydes to unsaturated alcohols is a valuable but challenging task for synthesizing fine chemicals. We report that single Rh atoms anchored to the edges of 2D MoS2 sheets can efficiently convert crotonaldehyde to crotyl alcohol with 100% selectivity via a steric confinement effect of pocketlike active sites. Characterization results suggest that the synthesized Rh1/MoS2 single-atom catalysts (SACs) possess a unique geometric and electronic configuration, which confines the adsorption mode of the reactant molecule by a steric effect. The DFT calculations suggest that the MoS2 sheets terminate with oxidized Mo edges and the Rh1 stably anchors at the Mo cation vacancy site, which can facilely dissociate H2 to H atoms. The dissociated H atoms spill over to react with the edge O atoms to form OH species and create an HO–Mo–Rh1–Mo–OH configuration, resembling a pocketlike active site, which confines the adsorption mode of the crotonaldehyde due to steric effects. Such sp...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    47
    References
    61
    Citations
    NaN
    KQI
    []