Protease activated receptor 2 signaling promotes self-renewal and metastasis in colorectal cancer through β-catenin and periostin.

2021 
The maintenance and expansion of cancer stem-like cells (CSCs) is necessary for metastasis. Although protease-activated receptor 2 (PAR2) is strongly associated with colorectal cancer (CRC) progression, it is unclear how it regulates distal metastasis, and no studies have shown the involvement of CSCs. In this study, we demonstrated that high PAR2 protein expression was correlated with metastatic CRC and poor prognosis in patients with stage III-IV CRC. CSCs from cell lines and patients showed higher levels of PAR2 than that of corresponding non-CSCs, and PAR2 inhibition reduced the CSC properties of the cell lines. Mechanistically, PAR2 inhibition switched the division mode of CSCs from symmetrical to asymmetrical via the ERK/GSK-3β/β-catenin pathway. We also identified periostin as a direct transcriptional target of β-catenin that mediates CSC self-renewal via PAR2 signaling. In a mouse xenograft model, PAR2 knockdown significantly attenuated liver metastasis. Finally, PAR2 expression was positively correlated with β-catenin and periostin in the primary sites of CRC with distant metastasis. Overall, our results indicate that PAR2 activation enhances CSC self-renewal and promotes metastasis through β-catenin and its target gene, periostin, in CRC.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    38
    References
    0
    Citations
    NaN
    KQI
    []