Advances in modulation spectroscopy: State-of-art photoreflectance metrology

2006 
In this paper, technological advances of modulation spectroscopy are presented, exploiting the sensitivity, room-temperature resolution, as well as the rapid and non-contact (non-destructive) nature of laser-induced photoreflectance (PR). A novel method of asynchronous (switching) modulation is presented to overcome laser-induced non-PR background effects, which limit or even obscure the complex (phase) PR response. The solid-state, acousto-optic based method may even be employed for non-uniform samples, and moreover, exhibits evidence for improved signal-to-noise level. Also presented is a novel optical design in order to achieve multiple, independent and simultaneous spectral acquisition, including auto-calibration. Results are demonstrated for heavily doped n-type and p-type GaAs substrates, and also technologically important HBT device structures, with further applications also emphasised for HEMTs, LEDs, etc. The results demonstrate the importance and role of PR as a successful commercial metrology tool for existing state-of-art, as well as next generation semiconductor characterisation and statistical-process-control (SPC) equipment.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    8
    References
    3
    Citations
    NaN
    KQI
    []