Responses of the proteome in testis of mice exposed chronically to environmentally relevant concentrations of Microcystin-LR.

2020 
Abstract Microcystin-LR (MC-LR), a widespread environmental contaminant, has been shown to have potent acute testicular toxicity. However, magnitudes of toxic effects, induced by MCs, depend on route and magnitude of exposure to the toxin. In the present study, male mice were orally exposed 1, 10 or 100 μg/L MC-LR for 90 or 180 days, and pathological approach and the isobaric tags for relative and absolute quantitation (iTRAQ)-based proteomics were employed with testes. Proteomics revealed that a number of differentially altered proteins may be involved in MC-LR-induced chronic testicular toxicity. The biological process analysis indicated the altered proteins played an important role in biological adhesion, cellular process, response to stimulus or rhythmic process. The cellular component analysis revealed that most of the proteins with altered expression associated with cell part, extracellular region, extracellular region part, membrane, membrane part, organelle or organelle part. The molecular function showed that these proteins were critical in molecular transducer activity. Integrity analyses provide first compelling evidence that MC-LR significantly cause dysfunction of blood-testis barrier (BTB) through affecting tight junctions and gap junctions. Moreover, phosphatidylinositol 3-kinase (PI3K)/AKT eventually contributed to injury result from chronic low-level MC-LR treatment. Identification of proteins in testis responsive to MC-LR provides insights into molecular mechanisms of chronic toxicity of MCs.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    44
    References
    11
    Citations
    NaN
    KQI
    []